

Advanced Logic - Homework 7

S3145034 (Group D)

March 2022

Consider the following set of default rules.

$$D = \left\{ \delta_1 = \frac{P \lor Q \quad R}{R}, \delta_2 = \frac{R \cdot S}{\neg P \lor Q}, \delta_3 = \frac{P \quad \neg Q}{S} \right\}$$

and initial set of facts.

 $W = \{P\}$

Let T = (W, D)

Recall that a formula ϕ is a skeptical consequence of T if and only if ϕ is true in every extension of T,

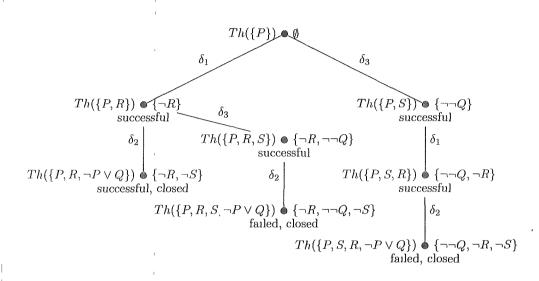
while ϕ is a credulous consequence of T if and only if ϕ is true in at least one extension of T.

1 Is (δ_1, δ_2) a process? Explain your answer

Answer: (δ_1, δ_2) is a process, because for $\Pi_1 = (\delta_1)$, we have $In(\Pi_1) = Th(\{P, R\})$, and therefore $pre(\delta_2) = R \in In(\Pi_1)$, so δ_2 is applicable to $In(\Pi_1)$

2 Is (δ_1, δ_2) closed? Explain your answer

Answer: Yes, (δ_1, δ_2) is closed We take $\Pi = (\delta_1, \delta_2)$, then $In(\Pi) = Th(\{P, R, \neg P \lor Q\})$ From P and $\neg P \lor Q$, Q follows. $\psi = \neg Q$, the justification of δ_3 , now cannot be satisfied, so δ_3 is not applicable


3 Is (δ_1, δ_2) successful? Explain your answer.

Answer: Yes, Π is successful We have that $In(\Pi) = Th(\{P, R, \neg P \lor Q\}), Out(\Pi) = \{\neg S, \neg R\}$ Neither element of $Out(\Pi)$ occurs in $In(\Pi)$

4 Draw the full process tree of the default theory T Include the relevant In- and Out-sets and label the branches as appropriate which ones are successful, failed, closed?

1

Answer:

5 Is S a credulous consequence of this theory? Explain your answer

Answer: From the above process tree, we see that T only has a single extension, namely the one formed by the process (δ_1, δ_2) Since $S \notin In((\delta_1, \delta_2))$, we conclude that S is not a credulous consequence of T

6. Is $P \wedge Q$ a skeptical consequence of this theory? Explain your answer

Answer: We have that $(P \land Q) \in In((\delta_1, \delta_2))$ (following from P and $\neg P \lor Q$) Since (δ_1, δ_2) forms the only extension of T, we conclude that $P \land Q$ is a skeptical consequence of T.